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The problem of the temperature distribution over the cross section of rectangular samples of single crystals 
of transition metals" under Joule heating conditions is considered analytically. The role of a transverse 

magnetic field in the formation of the temperature field in anisotropic heat exchange with the environment 
is determined. 

It is known that transfer phenomena of both charge and heat under low-temperature conditions are 

determined, to a considerable degree, by the electronic subsystem, namely, the dispersion laws of conduction 

electrons, their mechanisms of scattering by defects of the crystalline structure [1-4  ]. Investigation of transfer 

phenomena and kinetic coefficients under isothermal or adiabatic conditions requires special means of coupling the 

sample with a thermostat that ensure anisotropy of heat exchange with the environment. In galvanomagnetic 

investigations in the presence of finite densities of the excitation current such circumstances may cause uncon- 

trollable disturbance of the thermal regime of the system and, as a consequence, thr asppearance of thermoelectric 

fields. In [4 ] the authors determined the extent of the mutual influence of galvano- and thermomagnetic phenomena 

in normal uncompensated metals with closed and open Fermi surfaces (FS) under conditions of no heat flux along 
the magnetic field. 

The present work is devoted to consideration of a similar stationary thermal problem for metals obeying a 

different dispersion law. We have in mind compensated metals, with are characterized by a fundamentally different 

behavior of the kinetic coefficients in a strong magnetic field, which leads to high levels of dissipation [5, 6 ]. Along 

with symmetric heat removal it is of interest to study the influence of the strong "Hall" drift of the carriers in a 

magnetic field on the symmetry of the heat distribution with respect to the cross section. 

Thermal problems for thin metallic samples are traditionally based on the approximation of the absence of 

any temperature distribution over the volume because of the high value of a kinetic coefficient such as the thermal 

conductivity and the smallness of the cross section [7 ]. In the present case the notion of smallness of the cross 

section is complicated by the fact that under conditions of strong anisotropy of the kinetic coefficients, anisotropy 

of heat removal, and the need to decrease the influence of dimensional effects low-temperature transfer phenomena 

may exert a mutual influence on each other. 

As the object for consideration we have chosen a sample with a square cross section, along the long axis 

of which an electric current of density Jx flows. The sample was placed in liquid helium. One pair of lateral faces, 

normal to the vector of the magnetic intensity H = Hz, was open, thus allowing heat exchange with a thermostat 

to proceed, while another pair of faces, parallel to H, was adiabatically insulated. The problem will be solved under 

the assumption that elastic electron-impurity scattering serves as the main mechanism of dissipation. This will 

permit us to use, in analysis, the closed theory of transfer phenomena in a magnetic field and to adequately describe 

relaxation processes under conditions of helium temperatures. 

The temperature distribution over the cross section in the static case satisfies the differential heat transfer 
equation 
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jE - div q = 0,  (1) 

supplemented by the generalized equations of charge and heat transfer 

o r  OT (2) 
e i  = P i t  Jt + ai -- x , qi = n i t  h, - xik ox t  " 

Here Ei and qi are components of the electric field E and the heat flux q in the direction of the external normal; 

Pik, a ib  and tCik are components of the electric resistivity, thermoelectromotive force, and heat conduction tensors; 

nit  is a component of the tensor describing the Peltier effect; i, k = x, y, z, summation is carried out with respect 

to recurring indices; aT/Oxk  is the temperature gradient along one of the directions. 

Since the sample dimensions along the electric current direction are larger than the transverse dimensions, 

we may use the approximation of a long samplewithout a temperature distribution along the O X  axis. Then, 

eliminating the gradient OT/Oy from the expression for the flux component qz with account for the adopted z- 

approximation, within the framework of which the kinetic coefficients depend on the temperature according to a 

simple linear or square law, we obtain from (1) and (2) an expression for the temperature distribution along the 

O Z  axis: 

02T2 a OT2 
- - +  ~ + d T  2 +  b = O ,  (3) 
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-1,, ~-1 
b = PxxJ2x [(Xzz - t r  ) J , 

(6) 

here a prime denotes differentiation with respect to temperature. 

The equation obtained is the second-order equation with constant coefficients, whose solution, using the 

Lagrange method, is as follows: 

[ T = c 1 exp 0llz) + c 2 exp (2zz) - - ~ 2  " (7) 

Here 21 and 22 are the roots of characteristic equation (3). 
The form of the solution is essentially determined by the type of the roots ~1 and ~-2, which depend on the 

relationship between the parameters a 2 and 4d with respect to both absolute value and sign. Using the symmetry 

conditions of the kinetic coefficients in a strong magnetic field [81 and expressions for the tensors p", k", fl, ~: 

aik = -- Pilfllk ; gik = -- r f l i lPlk ,  (8) 

where fllk is the proportionality coefficient in the relation 

OT 
Ji = aik Ek + flik Ox k , 

we obtain 
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~,,~ = - o)~ I a I , ~,x = - o~ I ~ I , ,y~ = (~o~)-I  I'r l , 'r = l'r I , 

~yx " "  - -  CO'f I~1 ' ~ y  = -- (0~0 - x  I~1 , % y  -" -- ~0~ l a l  , Ir ---- (~00 - z  I~1 , 

(9)  

here a, to, re are the kinetic coefficients in the absence of a magnetic field; co is the cyclotron frequency; �9 is the 

relaxation time. 

As follows from (4), the coefficient a is determined by a sum of four summands. Since the last two 
i i !  

summands in (4) differ only in the tensor components axy and roy x and the form of these components is such that 

by virtue of the symmetry conditions they are expressed in terms of the same components of fl and p", it may be 

argued that these summands are asymptotically equal in absolute value and, as a consequence, a = - co r l a " l  

Ix' I-I . i  x. It is characteristic that the sign of this coefficient is determined with an accuracy up to the direction of 

the current and the magnetic field. 

The second parameter needed to solve the characteristic equation is the coefficient d, whose magnitude 
, , t  

and sign are determined by the product axyny x. Using relations (8) and (9), it is easily to verify that 

d=-(cor) 4 [a'l [~"[ [tc' Ix; ..._~N [-2 2 d (~oT)z 

a 

and at wv >> 1, 21,2 -- +- d ~ = +- 2. 

In accordance with the boundary conditions, when the temperature of the open faces is T O and the gradient 

along the OZ axis at the sample center vanishes because of the symmetry of the problem: T(z  = l) = T(z  = - l )  

= TO; OT/Ozlz=O = 0, we obtain 

((2  105 T =  T o - ~  [ e x p ( 2 / ) + e x p ( - 2 / ) ]  1 [ e x p ( 2 z ) + e x p ( - 2 z ) ] + ~  . (10)  

Differentiating of the obtained expression with respect to z, we arrive at an expression for the temperature 

gradient along the OZ axis 

f( ) }_0.5 OT 2 b b 
0-T = T O - -~ [exp (2/) + exp ( -  2/) ]- 1 [exp (2z) + exp ( -  2z) ] + ~ • 

_ } .1, • 2 T ~ 0 - ~  [ e x p ( M ) + e x p ( - 2 / ) ] - i  [exp(2z) e x p ( - 2 z ) ]  

We simplify this expression by expanding the exponents and retaining the terms with the maximum values 

OT _ (Tod _ Tolb)  z (12) 
02 

Here, the coordinate dependence of the temperature is a square-law dependence. In accordance with (5) the first 

term in expression (12) is negative in sign and even with respect to the current direction. To find a quantitative 

form of gradient (12), it is necessary to evaluate the coefficients d and b. 

It is characteristic that the gradient OT/Oz is an even function of the magnetic field and the current. This 

is clear from the viewpoint of general physics, since a change in the sign of the temperature gradient would 

contradict general principles of the thermodynamics of inversible processes. 

The adiabatic condition along the O Y axis does not exclude a temperature distribution along this direction. 

In this case the temperature gradient is as follows: 

OT - 1 (  OT ) (13) 
0-7 = '~" ~y~:~ - '~y~ T~ " 
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The dependence of the temperature on the variable y is linear in the present statement of the problem. At the 

sample center the gradient is determined by the Ettingshausen effect, while throughout the volume its form depends 

on the scale of the parameters entering expression (13). 

Since the Nernst thermoelectromofive force is 

OT (co~,) 4 (a,)2 T]x, 
(EN)~x = C~xy-~Y "" x 

then the thermoelectric component is an even function of the direction of the magnetic field vector and an odd 
function of the transport current, which makes it difficult to separate this component from the ohmic component 

upon inversion of the excitation current. 

For completeness of the analysis we shall consider the situation where the pair of faces normal to the vector 

of the magnetic field intensity are adiabatically insulated, the heat flux along the OZ axis Vanishes, and heat 

transfer occurs through the faces parallel t o t h e  magnetic field vector. Eliminating tl~e gradient OT/OZ from 

expression (2) for the heat flux component qg and transforming Eq. (1), it is easily to verify that if the direction 

of the transport current remains unchanged then in order to write the solution for the temperature distribution 

along the O Y  axis, it is necessary to interchange the subscripts y, z in expressions (3)-(8) without changing the 
A 

subscript x of the components of the tensors ~', p, ~. Then the temperature distribution along the O Y  axis will 

satisfy an equation analogous to (3): 

0 2 T  2 O T  2 
- -  + a ~  + d T  2 + b = 0 ,  

Oy 2 Oy 

(14) 

L ,:yy a = a x y  - -  :Tryx --  ~:yz ~ - -  a x z  iCzz - -  " tr , 

-1  ,, -1  , -1  2 
d = (axz [(Xyy - ) ] l x ,  

(16) 

2 - 1  , - 1  ( 1 7 )  
b =PxxJx [(ICyy - -  ICzylCyzlCzz ) ] . 

The temperature distribution along the O Y  axis acquires the form 

~ 2 ]  05  
T = [ c 1 exp 0lly) + c 2 exp 0t2Y) - , (18) 

where 21 and ;t2 are the roots of characteristic equation (14). Since, as before, the tensor components Z~'x and 
a'xz are asymptotically equal in absolute value and opposite in sign, the coefficient a of (15) acquires the following 
form under the given conditions: a = - ( o ) Q 3 l a ' l  IIc ' I - 1 ] x ,  i.e., it is (a)~)2-fold larger than in the previous case, 

while the coefficient d of (16) retains its previous order of magnitude: d = -(co~)41a '121~c ' I-2]x 2. Since d /a  2 

= (~ov) -2, then dl -- - a ,  22 = - d / a .  
As follows from the form of the roots 21 and 22, the temperature dependence is not a symmetric function 

of the coordinate y. Since a depends on H and ix as an odd function, inversion of the directions of the current and 

the magnetic field must lead to reversal of the temperature distribution, and in this case one face will be heated 

more strongly than the other. The question of how to determine the integration constants in (18) arises. In the 
previous case, heat from the sample volume was removed along the axis of the magnetic field and both directions 
(along and across the OZ axis) were equivalent, ~zz -- ~, and the magnetic field affected the heat removal through 
the off-diagonal components of the tensors of the kinetic coefficients. This provided symmetry, in value, of the 
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corresponding characteristic equation. In the case under consideration the situation is different. Actually, the 

uniqueness of the solution of second-order equation (14), attainable within the framework of the Cauchy problem, 

requires that not only the temperature but also its gradient be prescribed at some point. On the other hand, 

determination of the temperature gradient in the sample volume is a goal of the present problem. Therefore by 

solving Eq. (14) with Cauchy initial conditions, we may calculate only relative values of the gradients. Within the 

framework of these constraints we assume that the colder face has the ambient temperature T(y = /) = TO and the 

gradient at this point is 

= - ~ - .  

Next, with account for the smallness of the exponent of the root 22 the temperature distribution over the 

sample cross section along the O Y  axis obeys the following law: 

, }O.5 
ToTo 2 ToTo 

T(y) = - ~ 1  exp [;t I ( y - / ) ] +  T 0 - - ~ 1  " 

It is easily to verify that the ratio of the temperature gradients on the opposite faces is T'(y = l ) /T ' ( y  = - l )  

= exp(221/). 

The exponential dependence of OT/Oy on Jx and H leads to a complex transformation of the temperature 

field and the Nernst field under conditions of inversion of the current and the magnetic field, when the gradient 

OT/Oy on the open face changes by a factor of exp 0q/), while the Nernst electric field even changes sign upon 

inversion of the magnetic field due to the oddness of the component axy relative to the field. Moreover, on the 

adiabatically insulated side the Nernst field is determined by the gradient OT/Oz, whose Ettingshausen component 

is small: 

OT - 1 (  OT) 
OZ --  I~zz ~ z x  i x  - -  ICzy "~y " 

We now evaluate quantitatively the degree of mutual influence of galvano- and thermomagnetic phenomena 

for the particular case where the electric current I = 10 A flows through a sample with a cross section of - 10 -6 

m 2. For the residual resistance po = 5.10 -13 ~ - m  in the field H = 3-107 A/m the parameters are as follows: wT 

= 1.5. 103; x' =. X'zz = 5" 104 W/(m- K 2) ; the parameter characterizing the power of the heat source is b -- 103 
K2/m 2. 

Then  for qy = 0 the coefficients of characteristic equation (3) are: a = 10-3 m - l ;  d "" -1  m-2; 

)~1 = -22 -- d In. The gradient OT/Oz of (12) is determined mainly by the heating mechanism, and on the sample 

surface OT/Oz = 10 -1 K/re. The Nernst thermoelectric field axz(OT/Oz ) = 10 -6 V / m ,  caused by this gradient, is 

weak compared to the electric field ( - 1 - 1 0  V/m) related to the diagonal components of the resistance tensor. At 

the same time the temperature gradient OT/Oy is determined mainly by the Peltier effect, and the Nernst 

thermoelectric field is axy(OT/Oy) -- 1 0 - 1  1 V/m, which amounts to tens of percents of the electric field mentioned 

above. 

In the case of qz "- 0 heat is removed in the direction normal to H, and the coefficients of characteristic 

equation (14) increase (a = 103 m- l ;  d --- 1 m-2), thus causing distortion of the symmetry in the temperature 

distribution relatNe to the sample center. Under these conditions To -< 4- 103 K/m and the thermoelectric field is 

axy(OT/Oy ) = t0 -2 V/m, which amounts to several percent of the field Pxx]x, while 8T/Oz = 10 - 2 - 1 0  -3 K/m and 

the corresponding field axz(OT/Oz ) ~ 10 -6 V/m is negligible. 

To sum up, the anisotropy of heat exchange with the environment that occurs in low-temperature 

galvanomagnetic investigations may lead to redistribution of the temperature fields over the cross section of metallic 

samples so that the temperature gradients may be rather high. This circumstance requires taking into account the 
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considered effects for correct evaluation of various thermoelectric fields and determination of the possibility of their 

elimination from the sought characte/'iSfiCS. 

In conclusion, it should be noted that the only definable empirical parameter of the problem in our 

investigation is the residual resistance of the material, and all other kinetic coefficients are analytically determined 
from a number of postulates: the approximation of almost free electrons, the elastic scattering of electron, the 

effective magnetic field, etc. That is why the applicability of the present approach as well as the passage to simpler 
expressions is determined by an extent and depth of the correspondence of the adopted model to a real physical 

situation that includes a somewhat larger, than in normal metals, mass of the conduction electrons because of the 

narrowness of the energy bands, a more complicated form of the collision integral due to the presence of diffusion 

by magnetic transfer, and possible decompensation of the electron and hole volumes. Moreover, with such lateral 

dimensions, surface effects exert a certain influence on the kinetics of the charge carriers and, as consequence, on 

the asymptotic behavior of the tensors of the kinetic coefficients. The obtained temperature distributions over the 

sample cross section with a tensor nature for the kinetic coefficients describe the mutual influence of galvano- and 

thermomagnetic characteristics for finite levels of excitation. 

N O T A T I O N  

H, vector of the magnetic, field intensity; j, vector of the current density; q .vector  of the heat flux; E, 

vector of the electric field; p, tensor of electric resistance; a, tensor of thermo-emf; x, tensor of heat conduction; 

~, tensor describing the Peltier effect; T, sample temperature; E~ ~, vector of the Nernst thermoelectric field; 3, 

relaxation time of the carriers; co, cyclotron frequency. 
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